

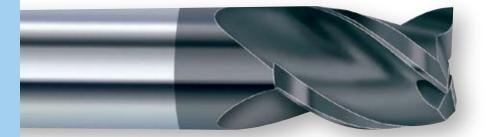
High Performance Carbide End Mills

Benefits

- Increased Productivity
- Improved Surface Finish
- Longer Tool Life
- Reduced Need For Coolant
- More Accurate Cutting

Features

- Optional Shank Neck
- Faced Hook
- High Hardness
- Stub Length
- Enhanced Corner Strength
- Application Specific Carbide
- Corner Radius
- Ti-NAMITE-A (AlTiN) Coated
- Stub Length
- Maximum Rigidity
- High Shear
- Geometry
- High Transverse Rupture Strength

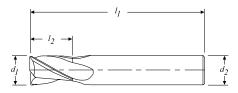

Improved productivity in Milling Stainless Steel, Nickel, and Titanium Alloys

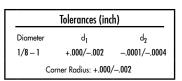
Approaching High-Strength and Heat Resisting Materials

Heat resisting alloys and stainless steels are designed to perform in the most demanding conditions and provide mechanical strength, corrosion resistance and oxidation resistance. The performance factors designed into these materials contribute to the difficulties encountered in machining. Titanium alloys also have a much lower modulus producing tool deflection and machining problems.

To effectively machine these materials, SGS has developed a tool to overcome the mechanical resistance of the metal and the heat generated in the deformation and frictional wear between the metal and the tool.

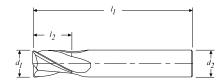
The SGS Tri-Carb[®], manufactured from lab-certified carbide, has been designed to provide twice the amount of shear available from conventional end mills to overcome the strength, work hardening and high impact resistance of these metals. The amount of heat produced cutting these alloys requires an effective high temperature coating barrier between the metal and the tool. Tri-Carb[®] is designed with Ti-NAMITE-A (AlTiN), the most effective coating in resisting high temperature conditions and the galling nature of these alloys.





Tri-CARB[®] - Series 65 -3 Flute - Fractional - End Mill

Cutting Diameter d ₁	Length of Cut I ₂	Overall Length I ₁	Shank Diameter d ₂	Corner Radius	ti-NAMITE A (Altin) EDP No.
1/8	1/4	1-1/2	1/8	.010	91200
3/16	5/16	2	3/16	.010	91201
1/4	3/8	2-1/2	1/4	.010	91202
5/16	7/16	2-1/2	5/16	.010	91203
3/8	1/2	2-1/2	3/8	.011	91204
1/2	5/8	3	1/2	.015	91205
5/8	3/4	3-1/2	5/8	.019	91206
3/4	1	4	3/4	.023	91207
1	1-1/4	4	1	.030	91208



Tri-CARB[®] - Series 65M -3 Flute - Metric - End Mill

3 6 38 3 4 8 50 4	0.05	
4 8 50 4	0,25	91300
	0,25	91301
5 8 50 6	0,25	91302
6 9 63 6	0,25	91303
8 11 63 8	0,25	91304
10 13 69 10	0,30	91305
12 15 75 12	0,36	91306
16 19 89 16	0,48	91307
20 26 100 20		

Tolerances (mm)						
Diameter	d1	d ₂				
3 — 6	+0,00/-0,03	+0,00/-0,01				
> 6 - 10	+0,00/-0,04	+0,00/-0,01				
> 10 – 20	+0,00/-0,05	+0,00/-0,01				
Corner Radius: +0,00/-0,05						

Speed and Feed Recommendations

Diameter (E))	Alloy Steel ≤ 275 Bhn 350 sfm 105 m / min		Titanium ≤ 300 Bhn 300 sfm 90 m / min Feed Rate –		Inconel ≤ 300 Bhn 80 sfm 24 m / min Per Tooth		Stainless ≤ 275 Bhn 300 sfm 90 m / min	
in mn	า	in	mm	in	mm	in	mm	in	mm
1/8 3		.0004	.010	.0003	.007	.0002	.005	.0003	.007
4			.015		.010		.007		.010
3/16 5		.0009	.023	.0005	.013	.0004	.010	.0004	.013
1/4 6		.0012	.030	.0009	.023	.0006	.015	.0006	.018
5/16 8		.0014	.035	.0012	.030	.0010	.025	.0009	.025
3/8 10)	.0018	.045	.0015	.038	.0012	.030	.0011	.033
1/2 12		.0023	.058	.0019	.048	.0016	.040	.0017	.043
5/8 16		.0026	.066	.0024	.060	.0020	.050	.0022	.055
3/4 20)	.0029	.073	.0026	.066	.0024	.060	.0025	.064
1		.0032	.081	.0035	.088	.0025	.064	.0033	.084

L → Ad

Axial Depth \leq .5 x Diameter

Radial Width $\leq .5 \times \text{Diameter}$ Axial Depth $\leq 1 \times \text{Diameter}$

 $\label{eq:rpm} \begin{array}{l} rpm = sfm \ x \ 3.82 \ / \ tool \ diameter \\ rpm = (m/min \ x \ 1000) \ / \ (3.14 \ x \ tool \ diameter) \\ feed \ per \ minute = feed \ per \ tooth \ x \ no. \ of \ teeth \ x \ rpm \end{array}$